Answer:
Sulfur: -1
Carbon: 0
Nitrogen: 0
Explanation:
The thiocyanate ion SCN- can have only two resonance structures, which are:
S - C ≡ N <--------> S = C = N
In the first structure, we have one single bond and one triple bond, in this case, the negative charge is located in the sulfur. This is because Sulfur have 6 electrons and those electrons are present in the atom, (see picture below), and counting the electron that is sharing with the Carbon, the total electrons that sulfur has is 7 (It has one more than usual). Carbon and nitrogen are already stable with 0 of formal charge, because carbon can only have 4 electrons which 1 is sharing with sulfur and the other 3 with the nitrogen, and nitrogen have 5 electrons, three sharing with carbon and the other two kept it for itself.
In the second structure, the negative charge of the sulfur is transfered to the nitrogen, meaning that it has 6 electrons the nitrogen (formal charge -1) and carbon and sulfur with 4 and 6 electrons respectively.
Between these two structures, the most stable is the first one basically because Sulfur is a better nucleophile than the Nitrogen, and can form stronger hydrogen bond in acid, giving more stable structure.
JJ Thompson proved Electrons, so negative charge
The amount of the solute is constant during dilution. So the mole number of HCl is 2*1.5=3 mole. The volume of HCl stock is 3/12=0.25 L. So using 0.25 L stock solution and dilute to 2.0 L.
Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Answer:no
Explanation:the heat will add more pressureand then it will pop.