Answer:
The titration process has quite a few real-world uses, including key roles in the food industry and medical community. The titration process is essentially an analytical technique, as it is used to determine a chemical or physical property of a chemical substance, element, or mixture (such as food). Specifically in the food industry, it is used to allow food manufactuers to determine the quantity of a reactant in a sample. To provide an example, it can be used to find the specific amount of stuff that is usually labeled on the nutrition label, such as sugar, salt, protein, calcium, vitamin C, etc. As for the medical world, pharamcists typically use this process to get the proper mix when compounding medicines. It is used to get the necessary proportions in intravenous drips.
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
The atomic mass would be 28.08535 amu. Multiply 27.9769 by .92297 = 25.803. Multiply 28.9765 by .046832 to get 1.357. Multiply 29.9738 by .03872 to get .925351136. Add 25.803 + 1.357 + .03872 to get 28.08535 amu