Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Answer:
α = τ/I = 0.77 / (0.70(0.30²)) = 12.22222... = 12 rad/s²
Explanation:
At a particular location, when an an increase in the rate at which water moves from the hydrosphere to the atmosphere, an increase in humidity is expected at that location. The term "humidity" generally refers to the amount of water vapor in the atmosphere.
Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude
Nfiltration is the movement of surface water into rock or soil through cracks and pore spaces.