1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
2 years ago
9

Ice core samples are used to measure…

Physics
2 answers:
zlopas [31]2 years ago
8 0
ANSWER:

the answer is A
blsea [12.9K]2 years ago
6 0

Answer:

the correct answer is A

You might be interested in
A disk-shaped merry-go-round of radius 2.93 m and mass 165 kg rotates freely with an angular speed of 0.691 rev/s . A 62.4 kg pe
vekshin1

Answer:

Explanation:

The problem is related to rotational motion . So we shall find out rotational kinetic energy .

K E = 1/2 x I ω²

ω is the final angular velocity

Moment of inertial of the disk

I ₁ = 1/2 m r²

= .5 x 165 x 2.93²

= 708.25 kgm²

Moment of inertial of the person

I₂ = mr²

= 62.5 x 2.93²

= 536.55 kgm²

ω₂ = v / R

= 3.11 / 2.93 rad /s

At the time of jumping , law of conservation of angular momentum will apply

I₁ ω₁ + I₂ω₂ =  (I₁  + I₂)ω

708.25 x0.691 + 536.55 x ( 3.11 / 2.93 ) = ( 708.25 + 536.55 ) ω

ω = 0  .85 rad/ s

K E = 1/2 x I ω²

= .5 x ( 708.25 + 536.55 ) ( .85 )²

449.68 J

3 0
3 years ago
Read 2 more answers
An object of mass 6 kg. is resting on a horizontal surface. A horizontal force
son4ous [18]

Answer:

a) The work done by the applied force is 1500 joules.

b) The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) 300 joules of energy are lost during motion.

Explanation:

a) Since the object has a constant mass, on which a constant horizontal force is exerted. The work done by the force (W), measured in joules, is defined by the following expression:

W = F\cdot \Delta x (1)

Where:

F - Force, measured in newtons.

\Delta x - Distance, measured in meters.

If we know that F = 15\,N and \Delta x = 100\,m, then the work done by the force exerted on the object is:

W = (15\,N)\cdot (100\,m)

W = 1500\,J

The work done by the applied force is 1500 joules.

b) At first we need to calculate the net acceleration of the object (a), measured in meters per square second. By assuming a constant acceleration, we use the following kinematic formula:

\Delta x = v_{o}\cdot t +\frac{1}{2}\cdot a\cdot t^{2} (2)

Where v_{o} is the initial velocity of the object, measured in meters per second.

We clear the acceleration within the equation above:

\frac{1}{2}\cdot a \cdot t^{2} =  \Delta x-v_{o}\cdot t

a = \frac{2\cdot (\Delta x - v_{o}\cdot t)}{t^{2}}

If we know that \Delta x = 100\,m, v_{o} = 0\,\frac{m}{s} and t = 10\,s, then the net acceleration experimented by the object is:

a = \frac{2\cdot \left[100\,m-\left(0\,\frac{m}{s} \right)\cdot (10\,s)\right]}{(10\,s)^{2}}

a = 2\,\frac{m}{s^{2}}

By the 2nd Newton's Law, we construct the following equation of equilibrium under the consideration of a friction force acting against the motion of the object:

\Sigma F = F - f = m\cdot a (3)

Where:

F - External force exerted on the object, measured in newtons.

f - Kinetic friction force, measured in newtons.

If we know that F = 15\,N, m = 6\,kg and a = 2\,\frac{m}{s^{2}}, the kinetic friction force is:

f = F-m\cdot a

f = 15\,N-(6\,kg)\cdot \left(2\,\frac{m}{s^{2}} \right)

f = 3\,N

The work done by friction (W'), measured in joules, is:

W' = f\cdot \Delta x (4)

W' = (3\,N) \cdot (100\,m)

W' = 300\,J

And the net work experimented by the object is:

\Delta W = 1500\,J - 300\,J

\Delta W = 1200\,J

By the Work-Energy Theorem we understand that change in translational kinetic energy (\Delta K), measured in joules, is equal to the change in net work. That is:

\Delta K = \Delta W (5)

If we know that \Delta W = 1200\,J, then the change in translational kinetic energy is:

\Delta K = 1200\,J

The kinetic energy of the block after 10 seconds is 1200 joules.

c) The magnitude of the force of friction is 3 newtons and its direction is against motion.

d) The energy lost by the object is equal to the work done by the force of friction. Therefore, 300 joules of energy are lost during motion.

7 0
3 years ago
Two identical conducting spheres, A and B, carry equal charge. They are stationary and are separated by a distance much larger t
podryga [215]

Answer:

8F_i = 3F_f

Explanation:

When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.

Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.

Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.

The electrostatic force, Fi, in the initial configuration can be calculated as follows.

F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f

7 0
3 years ago
How do i find stretch? The problem in questioning has already given me the elastic energy and k-value, but I have no idea how to
finlep [7]

Answer:

Stretch can be obtained using the Elastic potential energy formula.

The expression to find the stretch (x) is x=\sqrt{\frac{2\times EPE}{k}}

Explanation:

Given:

Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.

To find: Elongation in the spring (x).

We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).

The formula to find EPE is given as:

EPE=\frac{1}{2}kx^2

Rewriting the above expression in terms of 'x', we get:

x=\sqrt{\frac{2\times EPE}{k}}

Example:

If EPE = 100 J and spring constant, k = 2 N/m.

Elongation or stretch is given as:

x=\sqrt{\frac{2\times EPE}{k}}\\\\x=\sqrt{\frac{2\times 100}{2}}\\\\x=\sqrt{100}=10\ m

Therefore, the stretch in the spring is 10 m.

So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.

6 0
2 years ago
Anyone going to be my friend
Artemon [7]

Explanation:

I'd love to but we cant talk right now cause its 12:22 am here and I'm gonna sleep now lol.

but let's follow each other.

who knows we might be able to help each other.

whaddya say?

have a good day ♡

5 0
2 years ago
Other questions:
  • What percent of earth's density does Jupiter have?
    10·1 answer
  • What would happen when there is a collision between two objects having unequal masses
    10·1 answer
  • How do you calculate percentage uncertainties???
    10·1 answer
  • A coil with 150 turns and a cross-sectional area of 1.00 m2 experiences a magnetic field whose strength increases by 0.65T in 1.
    8·1 answer
  • What is the change in the direction of a wave when it passes obliquely from one medium to another called?
    7·1 answer
  • Dani says, "This classroom is 11 meters long. A meter is longer than a yard, so if I measure the length of this classroom in yar
    9·1 answer
  • Which type of wave needs a medium to travel?
    14·2 answers
  • The plates on a vacuum capacitor have a radius of 3.0 mm and are separated by a distance of 1.5 mm. What is the capacitance of t
    14·1 answer
  • 1. A composite when tested bounces half as high as the original material. How can
    14·1 answer
  • How are electromagnetic waves used in a bar-code scanner?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!