Answer:
Cancel out CO because it appears as a reactant in one intermediate reaction and a product in the other intermediate reaction.
Explanation:
The CO appears twice hence in he intermediate reaction it only forms path of the enabling reagents and it further reacts to form the final product. Accounting for the CO in the intermediate reaction that undergoes further reaction will impact on the stoichiometry of the reaction.
Answer:
0.11mol/dm³
Explanation:
The reaction expression is given as:
HCl + NaOH → NaCl + H₂O
Volume of acid = 25cm³ = 0.025dm³
Volume of base = 18.4cm³ = 0.0184dm³
Concentration of base = 0.15mol/dm³
Solution:
The concentration of hydrochloric acid = ?
To solve this problem, let us first find the number of moles of the base;
Number of moles = concentration x volume
Number of moles = 0.15mol/dm³ x 0.0184dm³ = 0.00276mol
From the balanced reaction equation;
1 mole of NaOH will combine with 1 mole of HCl
Therefore, 0.00276mol of the base will combine with 0.00276mol of HCl
So;
Concentration of acid =
=
= 0.11mol/dm³
It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
Http://water.ky.gov/groundwater/Pages/GroundwaterAwareness.aspx