The maximum speed is 0.55 m/s
Explanation:
For an object in uniform circular motion, the force of friction between the object and the ground provides the centripetal force required to keep the body in motion. Therefore we can write:

where the term on the left is the frictional force and the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the body
g is the gravitational acceleration
v is the speed of the body
r is the radius of the circular path
In this problem, we have:

r = 0.102 m

Substituting and re-arranging, we find the maximum speed v at which the salt shaker can rotate:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
The formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
<h3>
What is vertical motion of a projecile?</h3>
The vertical motion of a projectile is affected by gravity and the velocity of vertical motion given by the following formula;
Vy = Vsinθ
<h3>
What is horizontal motion of a projecile?</h3>
The horizontal velocity of a projectile is given by the following formula;
Vx = Vcosθ
<h3>Direction of the motion</h3>
The direction of the motion is calculated as follows;
tanθ = Vy/Vx
Thus, the formulas used to analyze the horizontal and vertical motion of projectiles launched at an angle involve the use of tangent, cosine and sine.
Learn more about vertical motion here: brainly.com/question/24216590
#SPJ4
The correct answer for this question is this one: "measuring the temperature increase of water from doing work stirring it." This experiment is generally regarded as being first carried out by James Joule is this one, <span>measuring the temperature increase of water from doing work stirring it.</span>
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s