Answer:
Some examples of things that stick together include clothes after they were in the dryer because a charge builds up on the objects, causing them to attract to each other. Things that don't stick together may include two neutral objects, like two pieces of neutral paper. ... If they repel, then they are the same charge.
Explanation:
Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.
Answer:
The wavelength of the EM wave is 7.5 * 10⁻⁴ m
Explanation:
The velocity of a wave is related to its wavelength by the following formula;
velocity = wavelength * frequency
For an electromagnetic (EM) wave, its velocity is equal to the velocity of light, c = 3.0 * 10⁸ m/s
Given that the frequency and veloity of the given EM wave in the question is known, its wavelength is calculated as follows:
wavelength = velocity/frequency
where velocity of the EM wave = 3.0 * 10⁸ m/s;
frequency = 4THz = 4 * 10¹² Hz
wavelength = 3.0 * 10⁸m/s / 4 * 10¹² Hz
wavelength = 7.5 * 10⁻⁴ m
Therefore, the wavelength of the EM wave is 7.5 * 10⁻⁴ m
The acceleration of gravity on Earth is 9.8 m/s² .
The speed of a falling object keeps increasing smoothly,
in such a way that the speed is always 9.8 m/s faster than
it was one second earlier.
If you 'drop' the penny, then it starts out with zero speed.
If you also start the clock at the same instant, then
After 1.10 sec, Speed = (1.10 x 9.8) = 10.78 meters/sec
After 1.85 sec, Speed = (1.85 x 9.8) = 18.13 meters/sec
But you want this second one given in a different unit of speed.
OK then:
= (18.13 meter/sec) x (3,600 sec/hr) x (1 mile/1609.344 meter)
= (18.13 x 3,600 / 1609.344) (mile/hr) = 40.56 mph (rounded)
We did notice that in an apparent effort to make the question
sound more erudite and sophisticated, you decided to phrase
it in terms of 'velocity'. We can answer it in those terms, if we
ASSUME that there is no wind, and the penny therefore doesn't
acquire any horizontal component of motion on its way down.
With that assumption in force, we are able to state unequivocally
and without fear of contradiction that each 'speed' described above ...
with the word 'downward' appended to it ... does become a 'velocity'.