<span>The activation energy was reached was 10:45 a.m. The additional energy did not affect the reaction.</span>
Answer:
Dimer of two peptide chains with 1 mole of molybdenum metal each.
Explanation:
Percentage of molybdenum in protein = 0.08%
Molecular mass of nitrate reductase = 240,000 g
Mass of molybdenum = x

Moles of molybdenum =
Each peptide chain of nitrate reductase contain 1 mole of molybdenum.
This means that nitrate reductase is composed of to two peptide chains. And in each peptide there is a single mole of molybdenum metal.
Answer: 11.5 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution
where,
Morality = 0.612 M
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the mass of copper (II)nitrate required is 11.5 grams
Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.