-number of electrons
-atom size
-charge of the atom
-number of protons
Answer:
2 moles
Explanation:
The following were obtained from the question:
Molarity = 0.25 M
Volume = 8L
Mole =?
Molarity is simply defined as the mole of solute per unit litre of solution. It is represented mathematically as:
Molarity = mole of solute/Volume of solution.
With the above equation, we can easily find the number of mole of MgCl2 present in 8 L of 0.25 M MgCl2 solution as follow:
Molarity = mole of solute/Volume of solution.
0.25 = mole of MgCl2 /8
Cross multiply to express in linear form
Mole of MgCl2 = 0.25 x 8
Mole of MgCl2 = 2 moles
Therefore, 2 moles of MgCl2 are present in 8 L of 0.25 M MgCl2 solution
Answer:
I think it's 6 moles are produced
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.
The atomic number, the number of protons and the number of electrons.