Answer:
The fastest object is the sphere, so it is the winner
Explanation:
To know which object will arrive faster down, let's look for the velocity of the center of mass of each object. Let's use the concept of mechanical energy
Highest point
Em₀ = U = mg y
Lowest point
= K =
+
= ½ I w² + ½ m
²
Angular velocity is related to linear velocity.
v = w r
w = v / r
= ½ I
²/r² + ½ m
²
= ½ (I / r² + m)
²
Energy is conserved
Em₀ = 
mg y = ½ (I / r² + m)
²
= √2 g y / (I / mr² +1)
With this expression we can know which object arrives as a higher speed, therefore invests less time and is the winner. Let's calculate the speed of the center of mass of each
Ring
I = m r²
= √ (2 g y / (m r² / mr² + 1))
= √ (2gy 1/2)
= (√ 2gy) 0.707
Solid sphere
I = 2/5 m r²
= √ (2gy / (2/5 m r² / mr² + 1)
= √ (2gy / (7/5))
= √ (2gy 5/7)
= (√ 2gy) 0.845
Cylinder
I = ½ m r²
= √ (2gy / ½ mr² / mr² + 1)
= √ (2gy / (3/2))
= √ (2g y 2/3)
= (√ 2gy) 0.816
The fastest object is the sphere, so it is the winner when descending the ramp
Answer:
Work is done by the gas = 5.92 x 10⁵ J = 592 kJ
Explanation:
Work done at fixed pressure, W = PΔV
Pressure, P = 3.7 x 10⁵ Pa
Change in volume, ΔV = 1.6 m³
Substituting the values of pressure and change in volume we will get
Work done at fixed pressure, W = PΔV = 3.7 x 10⁵ x 1.6 = 5.92 x 10⁵ J
Work is done by the gas = 5.92 x 10⁵ J = 592 kJ
Explanation:
In general the word random means by chance. The event that occurs unknowingly rather than according to plan is called at its randomness.
But in science, the word random relates with a type of event that is described by its probability distribution.
Also, random means the entropy of the system i.e. it is a thermodynamic quantity that represents the amount of energy in the system that is unavailable for doing work.
Answer:
The reason why first impressions are so important is that they last well beyond that moment. This is thanks to something called the primacy effect, which means that when someone experiences something before other things in a sequence, they remember that first thing more.