The balanced equation for the formation of ammonia is as follows
N₂ + 3H₂ ---> 2NH₃
stoichiometry of N₂ to H₂ is 1:3
we need to find the moles of N₂, volume of N₂ has been given
molar volume is where 1 mol of any gas occupies a volume of 22.4 L at STP.
if 22.4 L is occupied by 1 mol
then 3.5 L of gas is occupied by - 3.5 L / 22.4 L/mol = 0.16 mol
number of moles of N₂ present - 0.16 mol
1 mol of N₂ requires 3 mol of H₂
therefore 0.16 mol of N₂ requires - 3 x 0.16 = 0.48 mol of H₂
mass of H₂ required - 0.48 mol x 2 g/mol = 0.96 g
0.96 g of H₂ is required
Answer:
check it below
Explanation:
NaCl; Sodium Chloride is an ionic compound formed by sodium and Chlorine.
Ionic bond is very strong, It can't be separated back to sodium and chlorine just by physical change. Chemicals which are more reactive can displace ions, thus seperate it
In order to emit electrons, the cesium will have to absorb photons. Each photon will knock out one electron by transferring its energy to the electron. Therefore, by the principle of energy conservation, the energy of the removed electron will be equal to the energy of the incident photon. That energy is calculated using Planck's equation:
E = hf
E = 6.63 x 10⁻³⁴ * 1 x 10¹⁵
E = 6.63 x 10⁻¹⁹ Joules
The electron will have 6.63 x 10⁻¹⁹ Joules of kinetic energy