Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.
Explanation:
Mole ratio of Oxygen to Hydrogen gas = 1 : 2.
If we use 3.0 moles of oxygen gas, we would need 3.0 * 2 = 6.0 mol of hydrogen gas.
However we only have 4.2 mol of hydrogen. Therefore hydrogen is limiting and oxygen is in excess. (B)
Answer is Sodium Hydroxide.
Boiling points are a measure of intermolecular forces. The intermolecular forces increase with increasing polarization of bonds. Boiling point increases with molecular weight, and with surface area.
Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen.
From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.
*The case is impossible because the actual yield is greater than the theoretical yield.
If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E.