<span>This is best understood with Newtons Third Law of Motion: for every action there is an equal and opposite reaction. That should allow you to see the answer.</span>
Answer:
t = 5.56 ms
Explanation:
Given:-
- The current carried in, Iin = 1.000002 C
- The current carried out, Iout = 1.00000 C
- The radius of sphere, r = 10 cm
Find:-
How long would it take for the sphere to increase in potential by 1000 V?
Solution:-
- The net charge held by the isolated conducting sphere after (t) seconds would be:
qnet = (Iin - Iout)*t
qnet = t*(1.000002 - 1.00000) = 0.000002*t
- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:
V = k*qnet / r
Where, k = 8.99*10^9 ..... Coulomb's constant
qnet = V*r / k
t = 1000*0.1 / (8.99*10^9 * 0.000002)
t = 5.56 ms
The electrons in the positive object are attracted to the negatively charged object. Some of the electrons move from the positive object to the negative object.
an example of this is lightning because the positive electrons on/in the earth are attracted to the negative electrons in the clouds and sky so the positive move to the negative charge.
Answer:
the force exerted on the foot by the tibia would be 2975 N
Explanation:
Given the data in the question;
To maintain equilibrium between the foot and the ball vertically, the addition normal normal force
(750 N) and the tension in the Achilles tendon
(2225 N) must be equal to the force exerted on the foot by the tibia;
so
|
| + |
| = |
|
so force exerted on the foot by the tibia will be;
|
| = |
| + |
|
so we substitute IN OUR VALUES
|
| = 750 N + 2225 N
|
| = 2975 N
Therefore, the force exerted on the foot by the tibia would be 2975 N