Yes, K+ is<span> a </span>potassium<span> ion, and Mg</span>2+ is<span> a magnesium ion. But However, when non-metallic elements gain the </span>electrons<span> to form anions, Yes the end of their name </span>is<span> changed to “-ide.” and yes the example, a fluorine </span>atom<span> gains </span>one electron<span> to </span>become<span> a yes fluoride ion (F</span>-<span>) sooo yeessyes</span>
Answer:
Part 1: W = 116 Y = 163
Part 2: Since 232 is the mailing point of 2 kg then you would divide 232 by 2 to get the melting point for 1 kg, the same with Y.
H2 <span>because the smaller the gas molecule, the faster the diffusion. (the lightest molecule will diffuse the quickest)</span>
Answer:
p = 260 kilogram/cubic meter
Explanation:
ρ = 
= 
= 0.26 gram/milliliter
= 260 kilogram/cubic meter
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>