Explanation:
It is given that,
Spring constant, k = 81 N/m
We need to find the force required to :
(a) Compress the spring by 6 cm i.e. x₁ = 6 cm = -0.06 m
It can be calculated using Hooke's law as :
F = - k(-x₁)

F = 4.86 N
(b) Expand the spring by 17 cm i.e. x₂ = 17 cm = +0.17 m
So, F = -kx₂

F = -13.77 N
Hence, this is the required solution.
Some scientist believe that the ozone layers of the earth had been weakening and the waters or current changes direct ever 5-7 month.
D is the point where the planet moves the fastest. This is because it is in the perihelion, where the planet is moving at it’s fastest pace
Answer:
0.24
Explanation:
Mass of ball= 12g=0.012Kg
height of ball= 2.5m
velocity of ball before falling= 3.2m/s
potential energy of the ball=mgh= 0.012*10*2.5=0.3J
kinetic energy of the ball=0.5*m
=0.5*0.012*3.2*3.2=0.6J
Loss in mechanical energy during the fall= potential energy- Kinetic energy= 0.3-0.06=0.24J
note: During the fall, the potential energy of the ball is converted to kinetic energy. the loss in energy is due to air resistance.
Based on the given values above, in order for us to get the answer, we need to convert the units first. So in 1 kilogram, there is 1,000,000 micrograms. In this case, 1.6 kilograms is 1,600,000 micrograms. For the week to seconds, 1 week is equivalent to 604,800 seconds. Therefore, 1,600,000 micrograms/604,800 seconds. So we are going to simplify this. So it would be 2.65<span>µg/s. Hope this answers your question.</span>