Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Answer: The formula used to solve the problems related to first law of thermodynamics is
Explanation:
First law of thermodynamics states that the total energy of the system remains conserved. Energy can neither be destroyed, nor be created but it can only be transformed into one form to another.
Its implication is any change in the internal energy will be either due to heat energy or work energy.
Mathematically,
where, Q = heat energy
W = work energy
= Change in internal energy
Sign convention for these energies:
For Q: Heat absorbed will be positive and heat released will be negative.
For W: Work done by the system is negative and work done on the system is positive.
For : When negative, internal energy is decreasing and when positive, internal energy is increasing.
Hence, the formula used to solve the problems related to first law of thermodynamics is
1. electrons
2. positive to negative
3. insulator
4. TRUE
5. closed circuit
6. TRUE
7. series
8. TRUE
9. v=ir
10. TRUE
Hope this helps! :)
Explanation:
The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum
All of the above
As it's given that
- A uniform electric field in the z direction
Means the plane it's perpendicular to it xy plane.
Hence all are correct