Answer: final Velocity v = 10.2m/s
Explanation:
Final speed v(t) is given as
v(t) = u + at .......1
Where; u = the initial speed
a = acceleration
t = time taken
The total distance travelled d is given as
d = ut + 1/2(at^2)
Given
d = 5.0m
u = 2.0m
a = g = 10m/s2 (acceleration due to gravity)
Substituting into the equation above we have
5 = 2t + 5t^2
5t^2 +2t -5 = 0
Applying the quadratic formula. We have;
t = 0.82s & t = -1.22s
t cannot be negative
t = 0.82s
From equation 1 above
v = 2.0m/s + 10(0.82)m/s
v = 10.2m/s
There doesn't seem to be any direct connection.
Complete Question
You are performing a double slit experiment very similar to the one from DL by shining a laser on two nattow slits spaced
meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are Ï out of phase with each other (that is to say, Ao,- ). If you observe that on a screen placed 4 meters from the two slits that the distance between the bright spot closest to center of the pattern is 1.5 cm, what is the wavelength of the laser?
Answer:
The wavelength is 
Explanation:
From the question we are told that
The distance of slit separation is
The distance of the screen is 
The distance between the bright spot closest to the center of the interference is 
Generally the width of the central maximum fringe produced is mathematically represented as

=> 
=> 
=> 
Answer:
60km/hr west
Explanation:
When you are dealing with velocity you always name the direction its going in
TRUE.
Taste and smell senses are separate senses with their own receptor organs yet they are intimately entwined. Tastants, chemicals in foods are detected by taste buds which consist of special sensory cells.. When stimulated, these cells send signals to specific areas of the brain which then makes us conscious of the perception of taste. Also specialized cells in the nose pick up odorants, airborne odor molecules. Odorants stimulate receptor proteins found on hairlike cilia at the tips of the sensory cells, a process that initiates a neural response.