Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
Answer:
volt ÷ ampere
Explanation:
The mathematical form of Ohms law is given by :
V = IR
Where V is voltage
I is current
R is resistance

The unit of voltage is volt and that of current is ampere
Unit of resistance :

So, volt ÷ ampere is the same as the unit of resistance. Hence, the correct option is (a).
<span>if we assume the origin is at the dropping point and the object is merely dropped and not thrown up or down then y0 = 0 and v0 = 0. The equation reduces to </span>
<span>y = 0 + 0t + ½gt² </span>
<span>y = ½gt² </span>
<span>t = √(2y/g) </span>
<span>in the ft - lb - s system </span>
<span>y = -100 ft </span>
<span>g = -32.2 ft / s² </span>
<span>t = √(2y/g) </span>
<span>t = √(2(-100) / (-32.2)) </span>
<span>t = 2.5 s</span>
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Wire Length 
Resistance 
Force 
Power 
a)
Generally the equation for Power is mathematically given by

Therefore



b)
Generally the equation for Magnetic Field is mathematically given by



Answer:
The gravitational force is 130.
Explanation:
During this problem you have to multiply the 65 and the 0.6.