Answer:
Step-by-step explanation:
Ellie:; 105/3 = 35 wpm
Vivian: 120/4 = 30 wpm
The answer is A. for this, you have to set up a system of equations. the first one will be the area equation. since you know area=length x width, your equation will be LxW=50. the next equation is L=2W, since the length is two times the width. then, plug in 2W for the L in the other equation and you get 2W^2=50. divide by 2 and get W^2=25. square root both sides and you get W=5. plug back into the other equation to find L=10. Then, add the sides of the rectangle for the perimeter. 10+5+10+5=30.
Answer:
I think 7
Step-by-step explanation:
4 , 8 , 9 and 12 has factors.
7 has no factor.
4= 2×2
8= 2×4
9= 3×3
12= 3×4
<u>Answer:</u>
a) 3.675 m
b) 3.67m
<u>Explanation:</u>
We are given acceleration due to gravity on earth =
And on planet given =
A) <u>Since the maximum</u><u> jump height</u><u> is given by the formula </u>

Where H = max jump height,
v0 = velocity of jump,
Ø = angle of jump and
g = acceleration due to gravity
Considering velocity and angle in both cases

Where H1 = jump height on given planet,
H2 = jump height on earth = 0.75m (given)
g1 = 2.0
and
g2 = 9.8
Substituting these values we get H1 = 3.675m which is the required answer
B)<u> Formula to </u><u>find height</u><u> of ball thrown is given by </u>

which is due to projectile motion of ball
Now h = max height,
v0 = initial velocity = 0,
t = time of motion,
a = acceleration = g = acceleration due to gravity
Considering t = same on both places we can write

where h1 and h2 are max heights ball reaches on planet and earth respectively and g1 and g2 are respective accelerations
substituting h2 = 18m, g1 = 2.0
and g2 = 9.8
We get h1 = 3.67m which is the required height
Answer: 
Step-by-step explanation:
We have given the numbers = 2,0,1,9
We can use addition and subtraction operation to the given numbers such that the answer will be equals to 6.
We can add 2 ,0 and 1 and then subtract from 9 , we will get 6.
So the required expression can be

hence, the required expression can be 