Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury 
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury 
 
        
             
        
        
        
To find - Identify what kind of ligand (weak or strong), what kind 
               of wavelength (long or short), what kind of spin (high spin or 
               low spin) and whether it is paramagnetic or diamagnetic for 
               the following complexes.
               1. [Mn(CN)6]4-
               2. [Fe(OH)(H2O)5]2
               3. [CrCl4Br2]3-
Step - by - Step Explanation -
1.
[Mn(CN)⁶]⁴⁻ :
Ligand - Strong
Wavelength - Short
Spin - Low spin
Number of unpaired electrons = 1 ∴ paramagnetic.
2.
[Fe(OH)(H₂O)₅]²⁺ :
Ligand - Weak ( both OH⁻ and H₂O )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 5 ∴ paramagnetic.
3.
[CrCl₄Br₂]³⁻ :
Ligand - Weak ( both Br⁻ and Cl⁻ )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 3 ∴ paramagnetic.
 
        
             
        
        
        
Answer:
The molecular formula of X is C8H9NO2
Explanation:
Step 1: Data given
exact mass of 151.0640
Molar mass of C = 12 g/mol
Molar mass of H = 1.00783 g/mol
Molar mass of O = 15.9949 g/mol
Molar mass of N = 14.0031 g/mol
Step 2: Calculate molar mass of C7H5NO3
7*12 + 5*1.00783 + 14.0031 + 3*15.9949 = 151.02695 g/mol
Step 3: Calculate molar mass of C8H9NO2
8*12 + 9*1.00783 + 14.0031 + 2*15.9949 = 151.06337 g/mol
Step 4: Calculate molar mass of C10H17N
10*12 + 17*1.00783 + 14.0031 = 151.13621 g/mol
The molecular formula of X is C8H9NO2