Explanation:
1. Thermochemical equation is balance stoichiometric chemical equation written with the phases of the reactants and products in the brackets along with the enthalpy change of the reaction.
The given correct thermochemical reactions are:


2. Phase change affect the value of the enthalpy change of the thermochemical equation. This is because change in phase is accompanied by change in energy. For example:


In both reaction phase of water is changing with change in energy of enthalpy of reaction.
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
An acid, acids have a pH less than 7
Answer:
0.67mol/Kg
Explanation:
The following were obtained from the question:
Mole of solute = 0.50mol
Mass of solvent = 750g = 750/1000 = 0.75Kg
Molality =?
Molality = mole of solute /mass of solvent
Molality = 0.5/0.75
Molality = 0.67mol/Kg
This answer would be heat capacity