Answer:

Explanation:
We have an uniformly accelerated motion, with a negative acceleration. Thus, we use the kinematic equations to calculate the distance will it take to bring the car to a stop:

The acceleration can be calculated using Newton's second law:

Recall that the maximum force of friction is defined as
. So, replacing this:

Now, we calculate the distance:

Find how long it will take the fish to hit the ground
Yes, acceleration only tells you how velocity is changing. It doesn't say anything about what velocity is at any given time.
For example, if you set your car to cruise control on the highway going 80 mph. That is a constant high velocity, yet the car has 0 acceleration.
The opposite is also true. After a red light turns green, you put foot on the gas to accelerate. However, your velocity is initially low even though it has high acceleration.
Answer:
Fg = 4.2*10²² N
Explanation:
The gravitational force between any two masses, provided that can be approximated by point masses (comparing their diameters with the distance between them), obeys the Newton's Universal Law of Gravitation, which states that the force (always attractive) is proportional to the product of the masses and inversely proportional to the square of the distance between them (this as a consequence of our Universe being three-dimensional), as follows:

So, if one of the masses increases 6 times, the force between them will be directly 6 times larger, so the new magnitude of the force will be as follows:
Fg₂ = Fg₁*6 = 7*10²¹ N* 6 = 4.2*10²² N