From the information given, The mass of the bowling ball is 8 Kilograms and the momentum with which it is moving is 16 kg m/s.
We use the formula p = m × v
Where p is the momentum, m is the mass and v is the velocity.
We need velocity so we rewrite the equation thus:
P = mv, therefore p/m = v or v = p/m
In our case p = 16 and m = 8
v = p/m
v = 16/8
v = 2
Therefore the bowling ball is travelling at 2m/s
Answer:
I think A golf ball shot out of a small cannon
Explanation:
<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Is there information in the previous question which relates to this one?