It would be count ice layers
Answer:

Explanation:
Hello!
In this case, since the energy involved during a heating process is shown below:

Whereas the specific heat of water is 4.184 J/(g°C), we can compute the heated mass of water by the addition of 11.9 kJ (11900 J) of heat as shown below:

Thus, by plugging in, we obtain:

Best regards!
The missing components in the table to the right are indicated with orange letters. Use the periodic table in the tools bar and this link Web Elements to fill in the corresponding values. A B C D E F G. 2. See answers. Log in to add ... F = 737.7kJ/mol. G = 495.8kJ/mol. Explanation: We are asked some of the ...
2 answers
Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
Barium nitrate and methane (CH4) are both soluble. They both will dissolve in water, however, barium nitrate will dissociate becoming barium 2+ ions and nitrate becoming NO3 1- ions. All nitrates are soluble and dissociate. CH4 is a weak base and does dissolves but doesn't dissociate. So in solubility terms.... they are both equally soluble just one happens to dissociate into its cations and anions. Hope this helps!