Visual representation of covalent bonding indicating the valence shell electrons in the molecule, lines represents the shared pair of electron and pair of electrons that are not involved in bonding are represented as dots(lone pairs) are known as Lewis structures.
Compound formation takes place in order to complete the octet of each element that is according to octet rule, each atom forms bond with other atom in order to complete their octet that is to get eight electrons in its valence shell and attain stability.
An organic compound of the form is known as ketene.
The given ketene is .
The number of valence electron of:
The number of valence electrons in =
2 electrons are involved in each single bond between carbon and hydrogen and 4 electrons are involved in each double bond formed between carbon-carbon and carbon-oxygen. Hence, the total number of electrons involved in bond formation are 12 and rest 2 pair of electrons are present on oxygen as lone pair of electrons.
Therefore, the attached image is the Lewis structure of .
I am pretty sure the answer is . But I might be wrong.
Answer:
7.71x10^23 molecules
Explanation:
Avogadro's # = 6.022x10^23
1.28 mol SiO2 x 6.022x10^23/ 1 mol SiO2 = 7.71x10^23 molecules
Moles = Molarity x Volume
Moles = 2.0 x 0.50
= 1.0 mole
hope this helps!
Heat capacity of aluminium = 0.900 J/g°C
While heat capacity of water = 4.186 J/g°C
Heat = heat gained by water + heat gained by aluminium
Heat gained by water = 100 × 4.186 × 30.5
= 12767.3 Joules
Heat gained by aluminium = 15 × 0.9 × 30.5
= 411.75 Joules
Heat required = 13179.05 Joules or 13.179 kJoules