Answer:
The pressure is 5.62 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= ?
- V= 5.005 L
- n= 1.255 mol
- R= 0.082

- T= 273.5 K
Replacing:
P* 5.005 L= 1.255 mol* 0.082
*273.5 K
Solving:

P= 5.62 atm
<u><em>The pressure is 5.62 atm.</em></u>
I uploaded the answer to a file hosting. Here's link:
bit.
ly/3a8Nt8n
Just multiply 151 x 0.0001
That will equal:
0.00151 km or if you want to round it then it would be 0.02km
Answer:
ionic
Explanation:
Ionic bonds exist between Ca and F ions in CaF₂. Ionic bonds are interatomic bonds formed by the transfer of electrons from one atom to the other.
The donor atom here is Ca and it has two valence electrons. Fluorine is the receiving atom with 7 electrons in its outermost shell.
Ca would give one each of its two outermost electrons to the fluorine atoms to complete their octet. Ca ion would now resemble Argon and the flourine atoms would look more like Neon atoms.
This is an ionic bond
Answer:
Substance 4
Explanation:
Density is defined as mass per unit volume. A substance floats in another when its density is less than that of the substance on which it floats.
If an object is immersed in a denser liquid, it will sink
Since the density of water is 1 g/cm^3, any substance whose density is less than that of water will float in it.
If we look at the table, substance 4 has a density of 0.5g/cm^3. Hence, substance 4 is expected to float in water.