<span>we can find the number of moles of gas using the ideal gas law equation
PV = nRT
where P - pressure - 1.22 atm
V - volume - 0.245 L
n - number of moles
R - gas constant - 0.08206 L.atm/mol.K
T - temperature - 298 K
substituting the values in the equation
1.22 atm x 0.245 L = n x 0.08206 L.atm/mol.K x 298 K
n = 0.0122 mol
molar mass of compound = mass present / number of moles therefore molar mass = 0.465 g / 0.0122 mol = 38.1 g/mol
the answer is d) 38.0 g/mol </span>
The correct option is (C) 6.02 X 10²³
A sample of CH₄O with a mass of 32.0 g contains <u>6.02 X 10²³</u> molecules of CH₄O.
To calculate the number of moles;
Molar mass of CH₄O = C + 4(H) + O
= 12.01 + 4(1.008) + 16
= 32.04 g/mol
So, 1 mol of CH₄O = 32.04 g of CH₄O
Given, 32.0 g of CH₄O
According to Avagadro's constant 1 mole of a substance contains 6.022× 10^23 particles (molecules, atoms or ions).
= (32.0 g/1)(1 mol CH₄O/32.04 g CH₄O)(6.02x10²³/1 mol CH₄O)
= 6.02 X 10²³ molecules of CH₄O
Hence, a sample of will contain number of molecules 6.02 X 10²³ molecules.
Learn more about the Moles calculation with the help of the given link:
brainly.com/question/21085277
#SPJ4
c2 is a Air that you break
Answer:
the rise and fall is the tides.