Explanation:
When we move across a period from left to right then there will occur an increase in electronegativity and also there will occur an increase in non-metallic character of the elements.
As calcium (Ca) is a group 2A element and rubidium (Rb) is a group 1A element. Hence, Rb being an alkali metal is more metallic in nature than calcium (alkaline earth metal).
Both magnesium (Mg) and radium (Ra) are group 2A elements. And, when we move down a group then as the size of element increases so, it becomes easy of the metal atom to lose an electron.
As a result, there occurs an increase in metallic character of the element. Hence, Radium (Ra) is more metallic in nature than magnesium (Mg).
Also, both bromine and iodine are group 17 elements. Since, both of them are non-metals and non-metallic character increases on moving down the group.
Therefore, bromine (Br) is more metallic than iodine.
Answer:
Explanation:
1 Non-zero digits are always significant.
2 Any zeros between two significant digits are significant.
3 A final zero or trailing zeros in the decimal portion ONLY are significant.
Hi,
mL are smaller than liters. So milk should be liters, right? Yeah it should. If yiu put milk on a scale, it would go down bc it is so heavy. If it was not as heavy, it would be a different story here. Think of it that way.
<span>You must balance your equation correctly.
Here is your answer:
294gFeS2 x 1molFeS2/119.99 x 11mols O2/4mols FeS2--> 6.738mol O2
176gO2 x 1mol O2/32gO2 x 4mols FeS2/11mol FeS2--> 2mols FeS2
Now choose the molecule with the lowest amount (Limiting Reagent)
2molsFeS2 x 2molsFe2O3/4molsFeS2 x 159.7g
159.7g Fe2O3 grams produced.</span>
Answer:
The correct answer is entropy change of the surrounding plus the entropy change of the system must be positive.
Explanation:
The term entropy is a state function.Entropy can be defined as the disorder or randomness of the molecules in a system.
A spontaneous reaction is a type of reaction which deals with the release of free energy.The change of free energy in case of spontaneous reaction is always negative.
According to the second law of thermodynamics a spontaneous reaction will occur in a system if the total entropy of both system and surrounding increases during the reaction.