Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
-
is the moment of interia of earth before impact -
is the angular velocity of earth about an axis passing through the center of earth before impact
is moment of interia of earth and asteroid system
is the angular velocity of earth and asteroid system about the same axis
let 
since 

⇒ if time period is to increase by 25%, which is
times, the angular velocity decreases 25% which is
times
therefore

(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where
is mass of asteroid
⇒ 

=
+ 

⇒

Answer:

Explanation:
Speed of light is the product of its wavelength and frequency, expressed as
S=fw
Where s represent speed, f is frequency while w is wavelength
Making f the subject of the formula then
f=s/w
Substituting 2.99x10^8 m/s for s and 3.012x10^-12 m for w then

Therefore, the frequency equals to 
Answer:
Option ( B ) is correct .
Explanation:
To lift a heavy weight , inclined plane is used . Use of inclined plane , makes the task easier because instead of force mg , force mg sinθ is to be used which is less than mg . Here θ is inclination of inclined plane.
If h be the height by which weight is to be lifted
potential energy acquired by weight = mgh
work done by force mg sinθ = mgsinθ x d where d is displacement required .
mg sinθ x d = mgh ( work done by force = potential energy stored in luggage )
d = h / sinθ
d will be more than h
Hence inclined plane increases the distance to be covered by force applied though it decreases the force itself.
Hence option ( B ) is correct .
Answer:
a=0.555m/s^2
Explanation:
First we find the distance traveled from the moment the engineer reacts to the car, assuming uniform movement
X=VT
X=(18)(0.45)=8.1m
then we find the distance at which the deceleration begins, which is obtained by subtracting the total distance with the inner result
X=300-8.1=291.9
finally we use the equation for constant acceleration
Vf=0 final speed
Vo=18m/s= initial speed
X=291.9m
(Vf^2-Vo^2)/2X=a
(0-18^2)/(2*291.9)=a
a=0.555m/s^2