The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.
"Indoor environments are much less polluted than outdoor <span>environments" is the best option since indoor environments often rely on separate air and ventilation systems. </span>
Answer: Cations (positively-charged ions) and anions (negatively-charged ions) are formed when a metal loses electrons, and a nonmetal gains those electrons. The electrostatic attraction between the positives and negatives brings the particles together and creates an ionic compound, such as sodium chloride.
Answer:
pH = 7.8
Explanation:
The Henderson-Hasselbalch equation may be used to solve the problem:
pH = pKa + log([A⁻] / [HA])
The solution of concentration 0.001 M is a formal concentration, which means that it is the sum of the concentrations of the different forms of the acid. In order to find the concentration of the deprotonated form, the following equation is used:
[HA] + [A⁻] = 0.001 M
[A⁻] = 0.001 M - 0.0002 M = 0.0008 M
The values can then be substituted into the Henderson-Hasselbalch equation:
pH = 7.2 + log(0.0008M/0.0002M) = 7.8
The answer to this question is a