<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
A wind turbine turns wind energy into electricity using the aerodynamic force
Answer:
the glove could be heavy so slowing down his power
Explanation:
JUST GUESSED
As per the question, the distance travelled by bobsled [s] = 100 m
The time taken by the bobsled to travel that distance [t] = 25 s
We are asked to calculate the speed of the bobsled.
The speed of the bobsled is calculated as -




Hence, the correct answer to the question is A. 4 m/s.
G2V
The sun is a G2v type of star, a yellow dwarf and main sequence star.