It is definitely a molecule
Answer:
pH = 6.82
Explanation:
To solve this problem we can use the<em> Henderson-Hasselbach equation</em>:
- pH = pKa + log
![\frac{[NaOCl]}{[HOCl]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNaOCl%5D%7D%7B%5BHOCl%5D%7D)
We're given all the required data to <u>calculate the original pH of the buffer before 0.341 mol of HCl are added</u>:
- pKa = -log(Ka) = -log(2.9x10⁻⁸) = 7.54
- [HOCl] = [NaOCl] = 0.500 mol / 0.125 L = 4 M
- pH = 7.54 + log

By adding HCl, w<em>e simultaneously </em><u><em>increase the number of HOCl</em></u><em> and </em><u><em>decrease NaOCl</em></u>:
- pH = 7.54 + log
![\frac{[NaOCl-HCl]}{[HOCl+HCl]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNaOCl-HCl%5D%7D%7B%5BHOCl%2BHCl%5D%7D)
- pH = 7.54 + log

Answer:
z≅3
Atomic number is 3, So ion is Lithium ion (
)
Explanation:
First of all
v=f*λ
In our case v=c
c=f*λ
λ=c/f
where:
c is the speed of light
f is the frequency

Using Rydberg's Formula:

Where:
R is Rydberg constant=
z is atomic Number
For highest Energy:
n_1=1
n_2=∞

z≅3
Atomic number is 3, So ion is Lithium ion (
)
Answer:
8.96 L
Explanation:
At STP, 1 mole = 22.4 L
0.400 mole * (22.4 L. /1 mole of gas) = 8.96 L