Answer:
Velocity is the distance traveled during a specific unit of time
Answer:
AS we move from bottom to top on periodic table shielding decreased.
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As we move from bottom to top the energy level decreased because of decreased in electron thus shielding decreased and atomic size also decreased.
Answer:
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Explanation:
Initial volume of the gas = 
Initial pressure of the gas = 
Final volume of the gas = 
Final pressure of the gas = 
This law states that pressure is inversely proportional to the volume of the gas at constant temperature.

The equation given by this law is:








The gas in the cylinder is obeying Boyle's law.
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Answer:
C8H8 + 10O2 → 8CO2 + 4H2O
Explanation:
unbalanced reaction:
C8H8 + O2 → CO2 + H2O
balanced for semireactions:
(1) 16H2O + C8H8 → 8CO2 + 40H+
(2) 10(4H+ + O2 → 2H2O)
⇒ 40H+ + 10O2 → 20H2O
(1) + (2):
balanced reaction:
⇒ C8H8 + 10O2 → 8CO2 + 4H2O
8 - C - 8
20 - O2 - 20
8 - H - 8
Answer:
1) Greater than zero, and equal to the rate of the reverse reaction
2) Greater than zero, but less than the rate of the reverse reaction
3) Greater than zero, and equal to the rate of the reverse reaction
Explanation:
A reaction system is said to be in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.
Before we remove HCH3CO2 from the system, the system was in equilibrium. Recall that when a system is in equilibrium, the rate of forward reaction is equal to the rate of reverse reaction. The rate of reaction is greater than zero because products are being formed as the reactants interact with each other.
When HCH3CO2 is removed from the system, the equilibrium position shifts towards the left hand side hence the rate of reverse reaction is greater than the rate of forward reaction.
When the system attains equilibrium again, the rates of forward and reverse reaction become equal.