The soda can from the car will lose CO2 more quickly. This is because of the kinetic energy and behavior of gas molecules under different temperatures. CO2 is more soluble in cold temperatures than hot. Cold temperatures minimize the kinetic energy of gas molecules; thus, preventing the gas from escaping the soda. This is why soda that comes from the refrigerator has more fizz or spirit than soda at room temperature.
Answer:
if you touch a hot stove, the nerves in your skin shoot a message of pain to your brain. The brain then sends a message back telling the muscles in your hand to pull away.
Explanation:
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Answer:
C is the answer hope I helped you have a good day by
Answer:
2C₈H₁₈(g) + 25O₂(g)→16CO₂(g) + 18H₂O
Explanation:
To balance an equation, the moles of one element on one side of the equation should be the same as those on the other side of the equation. This is because (as a law of thermodynamics), in a chemical reaction, the matter is not destroyed nor created - atoms are only rearranged.