In a collision an object experiences impulses, this impulse can be determined by the product of net force exerted upon it in the specific course of time.
<u>Explanation:</u>
An object experiences impulse due to the force exerted upon it in a particular time period.
i.e.

Where,
F - Force acted upon the object
- time interval for which the force act
According to the definition of Impulse, it is the integral of force (F) that acts upon any object over a time interval ∆t. It produces an equivalent change in the momentum and that too in the same direction as of the applied force (F).
Therefore, in order to find the impulse on an object, we have to find the force acted on it in a specific time interval.
Answer:
Explanation:
Power = Energy/time
-Don't have energy so I'm gonna solve for it
Gravitational Potential Energy = mass x gravity x height
= 60 kg x 9.8 m/s2 x 5m
= 2940 J
Power = Energy/time
=2940 J/10 s
= 294 W
Answer:
Explanation:
Given
Temperature of the gas is increased from 100 to 200
Also we know that average kinetic energy of the molecules is

Where
R=Gas constant
=Avogadro's number
T=Temperature in kelvin

So kinetic energy increases by


The molecules of ice stick together in the process of cohesion. They are tightly packed so there isn't much room to move. Liquid water is a looser hold. The molecules can go past one another, and they will take the shape of whatever container they occupy. Water vapor is loosely contained, and it will will fill whatever container it is kept in, and it will take its shape, too.
Answer:
Isolated or Closed system, both are correct