A green rat snake that lives in the grass and a brown rat snake that lives in the desert is a form of geographically separated species.
Explanation:
The habitats of the green rat snake and brown rat snake shows that they are geographically separated species.
The two rat snakes are different species because of their distinct habitat and morphology.
When two species get separated by habitat their breeding method changes either by morphology or breeding pattern.
Such species do not produce viable offspring.
Thus a green rat snake and a brown rat snake have very different habitats they are now two different species.
Such species are said to be reproductively isolated species. Two species having genetic divergence undergo natural selection to adapt to the environment.
Answer:
energy
Explanation:
it is required energy to remove an electron from an atom
A food provides enough energy to raise the temperature of 2000 grams of water by 10°c contains 20 KCa.
1 Calorie is the amount of heat needed to elevate one gram of water to one degree Celsius temperature at one atmosphere of pressure.
The term "kilocalorie" is used to describe the amount of energy needed to increase 1 L of water's temperature by one degree Celsius at sea level.
Given
Mass of water (m) = 2000 g
Temp raise (ΔT) = 10°C
Heat capacity of water (C) = 1 calorie/g-C
Formula used
Heat (ΔH) = m × C × ΔT
= 2000 × 10 = 20000 C
In Kilo calories
20000 C = 20000/1000 = 20 KCa
Hence, a food provides enough energy to raise the temperature of 2000 grams of water by 10°c contains 20 KCa.
Learn more about Calories here brainly.com/question/23688200
#SPJ4
Answer:
hope it helps you a little
*A & B*
Answers A & B are not possible, as Hydrogen “bonds” are intermolecular forces and do not actually involve transfer or sharing of electrons.
*C & D*
Viscosity and surface tension are not the answer as they are not specific enough to the question.
*E*
Polarity of water molecules is the correct answer, as water molecules are highly polar. The partial positive of the Hydrogen on one water molecule is highly attracted to the partial negative of the Oxygen (due to its lone pairs) on another water molecule.