Answer:
There are
electrons in this atom.
Explanation:
Electron configuration of this atom:
.
The electron orbitals of an atom are denoted as
,
,
,
,
, etc. At any given time, an electron in this atom is located in exactly one orbital.
The electron configuration of an atom gives the number of electrons in each orbitals of this atom.
For example, in this atom, the superscript "
" on the right of "
" means that there are two electrons in the
orbital of this atom. Hence,
would translate to:
- The
orbital of this atom contains
electrons. - The
orbital of this atom contains
electrons. - The
orbitals of this atom contain
electrons.
Hence, there would be
electrons in total in this atom.
Answer:
Volume is the amount of space taken up an object.
D. Melting glaciers would mean more ice at its top, witch would slow the glaciers down
<span>Molar mass of chloroform (CHCl3)
C = 1 * 12 = 12 a.m.u
H = 1 * 1 = 1 a.m.u
Cl = 3 * 35.5 = 106.5 a.m.u
Molar Mass (CHCl3) = 12 + 1 + 106.5 = 119.5 g / mol
Knowing that:
The value of Avogadro's constant corresponds to approximately </span>

molecules, if chloroform contains

molecules. <span>
We have:
</span>

<span>
Now, how many grams are there in the chloroform molecule?
grams -------- molecules</span><span>
119,5 </span>→

x →




Find the mass of C in the 2.657 g CO2:
(2.657 g CO2) / (44.01 g/mol) = 0.06037 mol CO2
Since each mole of CO2 also has 1 mole of C, this is equivalent to 0.06037 mol C.
Find the mass of H in the 1.089 g H2O:
(1.089 g H2O) / (18.02 g/mol) = 0.06043 mol H2O
Since 1 mol H2O has 2 mol H, this is equivalent to (0.06043)*2 = 0.1209 mol H.
Taking the ratio of H to C: 0.1209 / 0.06037 = 2.002 ~ 2
Therefore, the empirical formula of isobutylene is CH2.