Answer: 5.844 grams of NaCl needed to make solution.
Explanation:
Answer:
Intermolecular forces (IMFs) can be used to predict relative boiling points. The stronger the IMFs, the lower the vapor pressure of the substance and the higher the boiling point. Therefore, we can compare the relative strengths of the IMFs of the compounds to predict their relative boiling points.
Explanation:
A visual representation of covalent bonding which represents the valence shell electrons in the molecule is said to be a Lewis structure. The lines represents the shared electron pairs and dots represents the electrons that are not involved in the bonding i.e lone pairs.
Number of valence electrons in each atom:
For Carbon,
= 4
For Hydrogen,
= 1
For Nitrogen,
= 5
The Lewis structure of
is shown in the attached image.
The formula of calculating formula charge =
-(1)
where, F.C is formal charge, V.E is number of valence electrons, N.E is number of non-bonding electrons and B.E is number of bonding electrons.
Now, calculating the formal charge:
For
on left side:

For
:

For
on right side:

The formula charge of each atom other than hydrogen is shown in the attached image.
Answer:
2,3–dimethylpentane
Explanation:
To know which option is correct, we shall determine the name of the compound.
To obtain the name of the compound, do the following:
1. Determine the longest continuous carbon chain. This gives the parent name of the compound.
2. Identify the substituent group attached to the compound.
3. Locate the position of the substituent group by giving it the lowest possible count.
4. Combine the above to obtain the name of the compound.
Now, we shall determine the name of the compound as follow:
1. The longest continuous carbon chain is 5. Thus, the parent name of the compound is pentane.
2. The substituent group attached is methyl (–CH₃)
3. There are two methyl group attached to the compound. One is located at carbon 2 and the other at carbon 3.
4. Therefore, the name of the compound is:
2,3–dimethylpentane
None of the options are correct.
Answer: m = 50 g ZnSO4
Explanation: First is convert the moles of Zn to the moles of ZnSO4 by having their mole ratio which is 2:2 based from the balanced equation. Next is convert the moles of ZnSO4 to mass using its molar mass.
0.311 mole Zn x 2 moles ZnSO4 / 2 moles Zn
= 0.311 moles ZnSO4
0.311 moles ZnSO4 x 161 g ZnSO4 / 1 mole ZnSO4
= 50 ZnSO4