Based on the information I would assume B, 73 degrees...
It shouldn't be A, 4 minutes on the burner should increase the temperature.
If it were D, it would be beyond boiling, and water takes a decent amount of energy to heat, D should be all vapor.
Same logic for C, it's basically almost boiling.
I would say 73 degrees seems most reasonable for 4 minutes.
Answer: By understanding conversion factors and how they are related to each other
Explanation:
Dimensional Analysis is a step by step approach to solving problems in Physics, Chemistry , and Mathematics. It involves having a clear knowledge and understanding to be able to convert a given unit to another in the same dimension using conversion factors and knowing how they are related to each other.
For instance, In Chemistry, we want to Convert 120mL to L.(note that ml stands for millilitres and ;L stands for litres)
Or first approach will be to write out the conversion factor related to our problem which is
1000ml =1L
such that 120ml = (we cross multiply))
giving us 120ml x 1L/1000ml =0.12L
This same process is applied to convert any type of dimensional analysis problems be it physics or mathematics.
The heat lost by the metal should be equal to the heat
gained by the water. We know that the heat capacity of water is simply 4.186 J
/ g °C. Therefore:
100 g * 4.186 J / g °C * (31°C – 25.1°C) = 28.2 g * Cp *
(95.2°C - 31°C)
<span>Cp = 1.36 J / g °C</span>
False, our tongue and nose work together
The balanced equation that shows the reaction between oxalic acid and permanganate ion in an acidic medium is: 2MnO4- + 5H2C2O4 + 6H+ -> 2Mn(2+) + 10CO2 + 8H2O. Thus, 1 mole of oxalic acid reacts with 0.4 mole of permanganate ion. This was obtained using stoichiometry:
1 mol H2C2O4 x (2 mol MnO4-/ 5 mol H2C2O4) = 0.4 mol MnO4-
In this redox reaction, the permanganate is reduced to manganese(II) ion.