Answer:
Place two of them as reactants.
Explanation:
- We have the two steps of reactions:
1) N₂(g ) + O₂(g) → 2NO(g).
2) 2NO(g )+ O₂(g) → 2NO₂(g).
- Adding the two equation with cancelling the intermediate (NO), we get:
<em>N₂(g ) + 2O₂(g) → 2NO₂(g).</em>
<em></em>
NO is cancelled out because there is one in each equation in the products side in eq. 1 and in oriduct side in eq. 2.
<em>So, we place two of oxygen as reactants.</em>
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
The two molecules will only react if they have enough energy. By heating the mixture, you are raising the energy levels of the molecules involved in the reaction. Increasing temperature also means the molecules are moving around faster and will therefore "bump" into each other more often.
<span>The answer is paint. A dissoluble is a substance that breaks up a solute in the arrangement of an answer, and any dissoluble other than water is viewed as a non-fluid dissoluble. Some basic illustrations incorporate either, liquor, benzene, disulfide, carbon tetrachloride and CH3)2CO.</span><span />
Answer:
The answer to your question is 0.269 g of Pb
Explanation:
Data
Lead solution = 0.000013 M
Volume = 100 L
mass = 0.269 g
atomic mass Pb = 207.2 g
Chemical reaction
2Pb(s) + O₂(aq) + 4H⁺(aq) → 2H₂O(l) + 2Pb₂⁺(aq)
Process
1.- Calculate the mass of Pb in solution
Formula
Molarity = 
Solve for number of moles
Number of moles = Volume x Molarity
Substitution
Number of moles = 100 x 0.000013
Number of moles = 0.0013
2.- Calculate the mass of Pb formed.
207.2 g of Pb ----------------- 1 mol
x g ----------------- 0.0013 moles
x = (0.0013 x 207.2) / 1
x = 0.269 g of Pb