Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Answer:
The work done on the athlete is approximately 2.09 J
Explanation:
From the definition of the work done by a variable force:

and substituting with the function of our problem:

<span>If the refrigerator weights 1365 and you are not exerting any vertical force on it, then the normal force is also 1365N. so Fn=1365
Fsf = Static frictional force = (coefficient of static friction) * (Normal force)
So the least for you could exert to move it is equal to the Fsf.
Fsf = (0.49)(1365N)</span><span>
</span>
Answer:
3 ohm
Explanation:
Resistance = Voltage/Current
= 6.0/2
= <u>3</u><u> </u><u>o</u><u>h</u><u>m</u>