Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
Answer:
1.65 h
121.39 km
Explanation:
Given that
speed of the driver, v = 99.5 km/h
time spent resting, t = 26 min
Average speed of the driver = 73.6 km/h
check attachment for calculation and how I arrived at the answer
<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>