Now that we have a background in the Lewis electron dot structure we can use it to locate the the valence electrons of the center atom. The valence-shell electron-pair repulsion (VSEPR) theory states that electron pairs repel each other whether or not they are in bond pairs or in lone pairs. Thus, electron pairs will spread themselves as far from each other as possible to minimize repulsion. VSEPR focuses not only on electron pairs, but it also focus on electron groups as a whole. An electron group can be an electron pair, a lone pair, a single unpaired electron, a double bond or a triple bond on the center atom. Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule.
The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction. Thus, the molecule's shape reflects its equilibrium state in which it has the lowest possible energy in the system. Although VSEPR theory predicts the distribution of the electrons, we have to take in consideration of the actual determinant of the molecular shape. We separate this into two categories, the electron-group geometry and the molecular geometry.
Answer:
Plasma
Explanation:
Plasma is a state of matter that in some cases is a synonym of ionized gas. It consists of groups of ions (particles with a net charge) with some of their outer electrons removed.
How many electrons have been removed depends on the type of plasma, since the most energetic plasmas are completely free of orbiting electrons. This is the case of the interiors of the sun and other stars.
Answer:
a miner or minor like young?
Explanation:
An apple should be cut into 4 equal pieces, then put each slice in a separate container and label accordingly with letters A, B, C, and Control. Put water, ginger ale, and lemon juice into containers A, B, and C respectively but leave the Control untouched. Observe which of the slices in containers A, B, C will stay the same color after the one in control turns brown, if the slice maintains its color then the liquid added prevents an apple slice from browning. The variables are the liquids added and the control is the slice that did not have anything added to it.
Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.