Mass wasting I think it's done
I’m positive it’s gonna be c
Soap is the sodium or potassium salt of long chain of fatty acid. Fatty acids when treated with NaOH or KOH forms Soap. This process is called as Saponification. Examples of Soap are as follow,
1. Sodium Stearate C₁₇H₃₅COONa
2. Potassium Oleate C₁₇H₃₃COOK
Reaction of Soap with MgCl₂;
When Soap is treated with MgCl₂ or CaCl₂ it forms insoluble precipitate called S.C.U.M. The reactions with MgCl₂ are as follow,
2C₁₇H₃₅COONa + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 NaCl
2C₁₇H₃₃COOK + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 KCl
These reaction are often found in hard water. And this reaction decreases the effectiveness of soap.
Each isotope has a unique rate of decay, making them suitable for determining the dates of ancient artifacts. The answer is "rate of decay of the isotope."
Answer:
HI.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
Rate of effusion ∝ 1/√molar mass.
- <em>(Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).</em>
- An unknown gas effuses at one half the speed of that of oxygen.
∵ Rate of effusion of unknown gas = 1/2 (Rate of effusion of O₂)
∴ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = 2.
Molar mass of O₂ = 32.0 g/mol.
∵ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).
∴ 2.0 = (√molar mass of unknown gas) / √32.0.
(
√molar mass of unknown gas) = 2.0 x √32.0
By squaring the both sides:
∴ molar mass of unknown gas = (2.0 x √32.0)² = 128 g/mol.
∴ The molar mass of sulfur dioxide = 80.91 g/mol and the molar mass of HI = 127.911 g/mol.
<em>So, the unknown gas is HI.</em>
<em></em>