Answer:
Sodium hydrogencarbonate or sodium carbonate
Answer:
Part A:
First, convert molarity to moles by multiplying by the volume:
0.293 M AgNO3 = (0.293 moles AgNO3)/1 L x 1.19 L = 0.349 moles AgNO3
5H2O2 + 2KMnO4<span>+ 3H2SO4 = 5O2 + 2MnSO4 + 8H2O + K2SO4
0,145 moles of KMnO4----------in--------1000ml
x moles of KMnO4---------------in------------46ml
x = 0,00667 moles of KMnO4
according to the reaction:
2 moles of KMnO4------------------5 moles of H2O2
0,00667 moles of KMnO4----------------x
x = 0,01668 moles of H2O2
0,01668 moles of H2O2---------in-----------50ml
x moles of H2O2--------------------in----------1000ml
<u>x = 0,334 mol/L H2O2</u></span>
Using E=hν where h is Planck's constant and v is the frequency of the photon. In the question above,the wavelenght is given so we can find the frequency of the photon using c=λν. c is a constant =3*10^8 so frequency is equal to
(3*10^8)/0.135*10^-9. Then use ur frequency in the eqn above using h 6.626*10^-34
Answer:
Q = 5671.05 J
Explanation:
Given data:
Mass of metal = 525 g
Initial temperature = 32.0 °C
Fina temperature = 43.0 °C
Heat absorbed by metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
specific heat capacity of metal X = 0.982 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 43.00°C - 32.00°C
ΔT = 11.00°C
Q = 525 g × 0.982 J/g.°C × 11.00°C
Q = 5671.05 J