Use the ideal gas law:
<em>PV=nRT
</em>p = pressure
v = volume
n = number of moles of sample
R = ideal gas constant = ~0.08206 (l*atm)/(K*mole)
T = Temp in Kelvin
Now we substitute while simultaneously solving for P(pressure)
P = (nRT)/V
P = (2.50 * 0.08206 * (27+273.15)) / 50
P = Now it's your turn.
Answer : The correct option for blank 1 is, Shifts left.
The correct option for blank 2 is, Reverse.
Explanation :
According to the Le Chatelier's Principle, when the addition of the reactant in reaction system then the equilibrium will shift to the right (forward) direction of the reaction.
Or, if we remove the reactants from the reaction system then the equilibrium will be shifted to the left (backward) direction of the reaction. And simultaneously, there will be increase in the reverse reaction for the attainment of the equilibrium.
The correct answer is industrial smog. This type of smog exists in coal power plants which creates smoke and sulfur dioxide which may mix with fog creating a thick blanket of haze. Sulfur dioxide is one primary component of an industrial smog.