Problem 1 Answer: 
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Add 6 to both sides</u>


<u></u>
<u>Divide both sides by 2</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 2 Answer: 
<u></u>
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Subtract 5 from both sides</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Divide both sides by -5</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 3 Answer: 
<u></u>
<u>Simplify both sides of the equation</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Subtract 120 from both sides</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u>Divide both sides by 12</u>
<u></u>
<u></u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 4 Answer: 
<u></u>
<u>Move all terms to the left:</u>
<u></u>
<u></u>
<u></u>
<u>Multiply parentheses</u>
<u></u>
<u></u>
<u></u>
<u>Add all the numbers together, and all the variables</u>
<u></u>
<u></u>
<u></u>
<u>Move all terms containing x to the left, all other terms to the right</u>
<u></u>
<u></u>
----------------------------------------------------------------
Problem 5 Answer: 
Answer:
<u>P(three tails) = 27/125 or 21.6%</u>
<u>P(two tails followed by one head) = 18/125 or 14.4%.</u>
Step-by-step explanation:
1. Let's review the information provided to us to answer the questions correctly:
Probability of getting a head when a biased coin is tossed = 2/5
therefore,
Probability of getting a tails when a biased coin is tossed = 3/5
2. Find the following probabilities and select the correct solution.
P(three tails) =
3/5 * 3/5 * 3/5 = 27/125 or 21.6%
P(two tails followed by one head) =
3/5 * 3/5 * 2/5 = 18/125 or 14.4%.
The answer is = (x + 5y) (x + 7y)
Break the expression into two groups.
x^2 + 12xy + 35y^2
(x^2 + 5xy) (7xy + 35^2)
Factor out x from x^2 + 5xy: x(x + 5y)
Factor out 7y from 7xy + 35y^2: 7y(x + 5y)
=x(x + 5y) + 7y(x + 5y)
Next, factor out the common term (x+ 5y).
Answer = (x + 5y) (x + 7y)
If he got 5 points in the first round and he needed at least thirty he would score 9 points in the next three rounds