Inversely proportional
I hope this helps you!
To solve this problem it is necessary to apply the concepts related to Current and Load.
The current in terms of the charge of an electron can be expressed as

Where,
q = Charge
t = time
At the same time the Charge is the amount of electrons multiplied by the amount of these, that is
q = ne
Replacing in the first equation we have to


Clearing n,

Here the time is one second then



Therefore the number of electrons per second are passing any cross sectional area of the wire are 
Helium... from the greek word helios... the sun
<span>selenium... from the greek word selene... the moon </span>
<span>palladium.. after the asteroid pallas </span>
<span>tellurium...from the greek word tellus... the earth </span>
<span>mercury...after the planet mercury </span>
<span>cerium... after the asteroid ceres </span>
<span>uranium...after the planet uranus </span>
<span>neptunium.. after the planet neptune </span>
<span>plutonium.. after the planet pluto</span>
It is true that only half of the moon is always illuminated
by the sun. The reason why the moon
changes it phases is because Moon orbits around the Earth, and due to this some
areas of the half of the moon will not be lit by the sun.
You can use Newton's Second Law which states:

Plug in given information:

This is closest to option
b which is your answer.