Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.
I don’t think I need anything from my dad to get my hair fixed so I’m just bored I don’t want you guys
To solve this problem it is necessary to apply the concepts related to the principle of superposition and constructive interference, that is to say everything that refers to an overlap of two or more equal frequency waves, which when interfering create a new pattern of waves of greater intensity (amplitude) whose cusp is the antinode.
Mathematically its definition can be given as:

Where
d = Width of the slit
Angle between the beam and the source
m = Order (any integer) which represent the number of repetition of the spectrum, at this case 1 (maximum respect the wavelength)
Since the point of the theta angle for which the diffraction becomes maximum will be when it is worth one then we have to:


Applying the given relation of frequency, speed and wavelength then we will have that the frequency would be:

Here the velocity is equal to the speed of light and the wavelength to the value previously found.


Therefore the smallest microwave frequency for which only the central maximum occurs is 1.5Ghz
The formula we need to use is displacement.
, where xf is final position and xi is initial position.
We report the final position of 5 and the displacement of 2 so the formula is now:
.
So the initial position of truck A is 3.
Hope this helps.
r3t40