Full electron configuration of barium: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s2
Answer:
1.4 × 10^-4.
Explanation:
C3H6O3 + H2O <======> C3H5O3^- + H3O^+ ------------------------------------------(1).
So, from the question above we are given the following parameters or data which is going to help in solving this particular Question/problem;
=>concentration of the solution of lactic acid (CH3CH(OH)C00H) = 0.1 M and pH = 2.44.
Therefore, the concentration of the hydrogen ion[H^+} can be determined from the pH formula given below;
pH = - log { H^+}.
2.44 = - log { H^+}.
Therefore, {H^+} = 0.0036 M.
From the equation (1) given above, we have that the ratio for the equilibrium reaction is 1 : 1 : 1 :1. Therefore, molarity of C3H5O3^- = 0.0036 M and the molarity of C3H6O3 =( 0.1 - 0.0036 M) = 0.0964 M at equilibrium.
Hence, ka = {C3H5O3^-} { H3O^+} /{C3H6O3} = ( 0.0036 M)^2 /(0.0964 M) = 1.4 × 10^-4.
<span>Helium = 1
Carbon = 8
Nitrogen = 8
Strontium = 52
Tellurium = 71
If you look on a periodic table, on each element there is a number on
the top left. This represents the number of protons in an atom. Protons
have a mass of 1 (in relative to Carbon-13)
If we take nitrogen-15 for example; The number 15 tells you that the
isotope has a mass of 15. Now if you look on the periodic table,
Nitrogen has a proton number of 7. Only protons and neutrons have a
mass, electrons are considered to be negligable. Therefore the number of
neutrons Nitrogen-15 contains is 15 - 7 = 8 </span>
Answer:
Explanation:
Secondary consumers are organisms that eat primary consumers for energy. Primary consumers are always herbivores, or organisms that only eat autotrophic plants.
Carnivores only eat other animals, and omnivores eat both plant and animal matter.