Mechanical advantage allows you to apply a force over a short distance to increase the distance and object moves.
Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer: 114 km/h
Explanation:
The formula for determining average speed is expressed as
Average speed = total distance/total time
The car travels 85 km in the first half hour of a trip. The car continues to travel for 2 more hours and travels 200 km. It means that the total distance that the car travels is
85 + 200 = 285 km
The total time spent by the car is
0.5 + 2 = 2.5 hours
Therefore,
Average speed = 285/2.5 = 114 km/h
Answer:
Potential energy is converted to kinetic energy, which is the energy exerted by a moving object. An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation: