1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
3 years ago
7

New ocean crust is continually formed at ____.

Physics
1 answer:
vazorg [7]3 years ago
7 0

Answer:

B) trenches

Explanation:

New oceanic crust is formed and pushes the old oceanic crust down into a trench.

You might be interested in
There is a parallel plate capacitor. Both plates are 4x2 cm and are 10 cm apart. The top plate has surface charge density of 10C
liberstina [14]

Answer:

1) The total charge of the top plate is 0.008 C

b) The total charge of the bottom plate is -0.008 C

2) The electric field at the point exactly midway between the plates is 0

3) The electric field between plates is approximately 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates is approximately 1.807 × 10⁻⁷ N

Explanation:

The given parameters of the parallel plate capacitor are;

The dimensions of the plates = 4 × 2 cm

The distance between the plates = 10 cm

The surface charge density of the top plate, σ₁ = 10 C/m²

The surface charge density of the bottom plate, σ₂ = -10 C/m²

The surface area, A = 0.04 m × 0.02 m = 0.0008 m²

1) The total charge of the top plate, Q = σ₁ × A = 0.0008 m² × 10 C/m² = 0.008 C

b) The total charge of the bottom plate, Q = σ₂ × A = 0.0008 m² × -10 C/m² = -0.008 C

2) The electrical field at the point exactly midway between the plates is given as follows;

V_{tot} = V_{q1} + V_{q2}

V_q = \dfrac{k \cdot q}{r}

Therefore, we have;

The distance to the midpoint between the two plates = 10 cm/2 = 5 cm = 0.05 m

V_{tot} =  \dfrac{k \cdot q}{0.05} + \dfrac{k \cdot (-q)}{0.05}  = \dfrac{k \cdot q}{0.05} - \dfrac{k \cdot q}{0.05} = 0

The electric field at the point exactly midway between the plates, V_{tot} = 0

3) The electric field, 'E', between plates is given as follows;

E =\dfrac{\sigma }{\epsilon_0 } = \dfrac{10 \ C/m^2}{8.854 \times 10^{-12} \ C^2/(N\cdot m^2)} \approx 1.1294 \times 10^{12}\ N/C

E ≈ 1.1294 × 10¹² N/C

The electric field between plates, E ≈ 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates

The charge on an electron, e = -1.6 × 10⁻¹⁹ C

The force on an electron in the middle of the two plates, F_e = E × e

∴ F_e = 1.1294 × 10¹² N/C ×  -1.6 × 10⁻¹⁹ C ≈ 1.807 × 10⁻⁷ N

The force on an electron in the middle of the two plates, F_e ≈ 1.807 × 10⁻⁷ N

4 0
3 years ago
Can someone please help?
kenny6666 [7]

Answer:

uh with what?

Explanation:

4 0
3 years ago
Una ave vuela a una velocidad constante de 15m/s en una trayectoria rectilínea. Si dura una hora volando ¿cuanta distancia habrá
earnstyle [38]

Answer:

54,000

Explanation:

3 0
3 years ago
In Rutherford's experiment, which of the following proved that the
vampirchik [111]

Answer:

b) the alpha particles were found to be attracted to the nucleus

Explanation:

5 0
3 years ago
The water in a river flows uniformly at a constant speed of 2.50 m/s between parallel banks 80.0 m apart. You are to deliver a p
NISA [10]

Answer:

a)  The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) 133.33 m

c) 53.13°

d) 106.67 m

Explanation:

a) The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) velocity = distance * time

Let the velocity of the swimmer be v_{s} = 1.5 m/s

The separation of the two sides of the river, d = 80 m

The time taken by the swimmer to get to the other end of the river bank,

t = \frac{d}{v_{s} }

t = 80/1.5

t = 53.33 s

The swimmer will be carried downstream by the river through a distance, s

Let the velocity of the river be v_{r} = 2.5 m/s

S = v_{r} t

S = 53.33 * 2.5

S = 133.33 m

c) To minimize the distance traveled by the swimmer, his resultant velocity must be perpendicular to the velocity of the swimmer relative to water

That is ,

cos \theta = \frac{v_{s} }{v_{r} } \\cos \theta = 1.5/2.5\\cos \theta = 0.6\\\theta = cos^{-1} 0.6\\\theta = 53.13^{0}

d) Downstream velocity of the swimmer, v_{y} = v_{s} sin \theta\\

v_{y} = 1.5 sin 53.13\\v_{y} = 1.2 m/s

The vertical displacement is given by, y = v_{y} t

80 = 1.2 t

t = 80/1.2

t = 66.67 s

the horizontal speed,

v_{x} = 2.5 - 1.5cos53.13\\v_{x} = 1.6 m/s

The downstream horizontal distance of the swimmer, x = v_{x} t

x = 1.6 * 66.67

x = 106.67 m

7 0
3 years ago
Other questions:
  • A woman steps in front of a child to keep him from running off. which term best describes this example? negative work positive w
    9·2 answers
  • Translucent definition: __________ is allowed to pass through translucent objects.
    7·2 answers
  • The angular quantities: angular displacement, angular velocity, angular acceleration, are defined in a very similar way to the l
    7·1 answer
  • a box is pulled by by two forces. the first force is 50 newtons west and the second force is 20 newtons east. find the resultant
    13·1 answer
  • Remi travels 160 meters in 4 seconds. What was Remi's initial speed if her final velocity was 6.9 m/s?
    15·1 answer
  • A slender rod 100.00cm long is used as a meter stick. Twoparallel axes which are perpendicular to the rod are considered.The fir
    15·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • A horizontal, mass spring system undergoes simple harmonic motion. which of the following statements is correct reguarding the m
    7·1 answer
  • In its elemental state, carbon is available as:
    14·2 answers
  • On what evidence do you accept the statement,"Aboslute zero is at -273."​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!