1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
8

GIVING THE BRAINEST AND 15 POINTS

Physics
1 answer:
Gekata [30.6K]3 years ago
8 0

Answer:

45

Explanation:

3x x 5=45

You might be interested in
I just want to shift to another country to learn like London so who can tell me the progress​
scoray [572]

Answer:

by shift do you mean travel

Explanation:

3 0
2 years ago
Describe a situation where an object has a changing velocity but constant speed.
ehidna [41]
To summarize, an object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed<span>. While the </span>speed<span> of the object is</span>constant<span>, its </span>velocity<span> is </span>changing<span>. </span>Velocity<span>, being a vector, has a </span>constant<span>magnitude </span>but<span> a </span>changing<span> direction.</span>
8 0
3 years ago
Conductors have ___<br> resistance.
vazorg [7]

Answer:

little/no

Explanation:

Conductors are materials, which conduct electricity and/or heat. That means, that their resistance to such energy is so little, that an electric current is able to pass through.

5 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
6. If a bicyclist, with initial velocity of zero, steadily gained speed until reaching a final velocity of 39m/s, how far would
Bezzdna [24]

Answer:

  175 m

Explanation:

The average velocity for constant acceleration is the average of the beginning and ending velocities. That is (0+39)/2=19.5 m/s. If the bicyclist rides for 9 seconds, the distance traveled is ...

  (9 s)(19.5 m/s) = 175.5 m

She would travel 175.5 meters in that time.

7 0
3 years ago
Other questions:
  • The terminals of a 0.70 Vwatch battery are connected by a 80.0-m-long gold wire with a diameter of 0.200 mm What is the current
    11·1 answer
  • a chemical reaction a temperature change may occur because of the breaking or formation of chemical bonds that release excess en
    12·1 answer
  • Cube A has a volume of 2cm x 2cm x 2cm. what is its density
    10·1 answer
  • A 0.157-kg baseball moving at 21.2 m/s strikes the glove of a catcher. The glove recoils a distance of 10.7 cm.The magnitude of
    13·2 answers
  • A crate is given a big push, and after it is released, it slides up an inclined plane which makes an angle 0.52 radians with the
    6·1 answer
  • A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice. She slows steadily, t
    12·1 answer
  • An infinitely long line charge of uniform linear charge density λ = -3.00 µC/m lies parallel to the y axis at x = -3.00 m. A poi
    10·1 answer
  • Incentives influence people's economic decisions by:
    5·2 answers
  • Only the object having density less than water float, why?​
    15·2 answers
  • Classify the statement below as either Speed or Velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!