The accepted model of the atom was changed.
Answer:
The percent isotopic abundance of Ir-193 is 60.85 %
The percent isotopic abundance of Ir-191 is 39.15 %
Explanation:
we know there are two naturally occurring isotopes of iridium, Ir-191 and Ir-193
First of all we will set the fraction for both isotopes
X for the isotopes having mass 193
1-x for isotopes having mass 191
The average atomic mass is 192.217
we will use the following equation,
193x + 191(1-x) = 192.217
193x + 191 - 191x = 192.217
193x- 191x = 192.217 - 191
2x = 1.217
x= 1.217/2
x= 0.6085
0.6085 × 100 = 60.85 %
60.85% is abundance of Ir-193 because we solve the fraction x.
now we will calculate the abundance of Ir-191.
(1-x)
1-0.6085 =0.3915
0.3915× 100= 39.15 %
Active metals are those metals in the group 1 of the periodic table.
Electronegativity is the trend to atract electrons.
Active metals have few valence electron, because their last shell is of the kind ns^1 or ns^2
Then, these atoms do not trend to attract electrons. The most electronegative atomos are those who have 7 valence elecfrons; this is their last shell is of the kind ns^7, because when they attract one electron to its valence shell they will complete 8 electrons which is the most stable configuration.
Answer:
m Br = 439.472 g
Explanation:
mass Br = ?
∴ mol Br = 5.50 mol
∴ molar mass Br 79.904 g/mol
mass = (mol)*(g/mol)
⇒ m Br = (5.50 mol)*(79.904 g/mol)
⇒ m Br = 439.472 g
Answer:
Since the force applied at both ends is acting in opposite directions, then the resultant force becomes negative.
= 35 - 25 = 10