For the first question the answer is
The "s" orbital can only hold a maximum of two electrons. ... Elements in the each group have the same number of valence electrons. Why is hydrogen set apart by itself? Hydrogen does not belong to a single group b/c it can be considered an alkali metal, but it is also a gas.
here can be a number of chemical processes by which a compounds can be broken down into simpler substances. The most common and wide-spread of such processes is Catabolism. Along with anabolism, catabolism make up the metabolism process for living organisms. In catabolism, complex chemical molecules (such as proteins, polysaccharides, etc.) are broken down into simpler molecules (such as amino acids, monosaccharides, etc.). This is often accompanied by release of energy in the form of ATP (adenosine triphosphate) molecules and intermediate metabolites (which can be used by the organism in the anabolic processes). The energy thus generated is used for operation and maintenance of cells (and consequently, the body).
Other processes that break down chemical substances into simpler substances, include depolymerization, decomposition, etc.
Hope this helps.
The amount of matter in an object is its Mass...
Answer:
The structures are shown in the figure.
Explanation:
The primary hydrogens are those which are attached to primary carbon.
Primary carbons are the carbons which are attached to only one carbon.
Primary carbons is bonded to three hydrogens.
In order to draw such structure we will draw structures which will have carbon with three hydrogens or no hydrogens (quaternary)
The structures are shown in the figure with clear marking.
Answer:
c. Compound 2 is more acidic because its conjugate base is more resonance stabilized
Explanation:
You haven't told us what the compounds are, so let's assume that the formula of Compound 1 is HCOCH₂OH and that of Compound 2 is CH₃COOH.
The conjugate base of 2 is CH₃COO⁻. It has two important resonance contributors, and the negative charge is evenly distributed between the two oxygen atoms.
CH₃COOH + H₂O ⇌ CH₃COO⁻ + H₃O⁺
The stabilization of the conjugate base pulls the position of equilibrium to the right, so the compound is more acidic than 1.