The solution for this problem is:
r = [(2.90 + 0.0900t²) i - 0.0150t³ j] m/s²
this is for t in seconds and r in meters
v = dr/dt = [0.180t i - 0.0450t² j] m/s²
tan(-36.0º) = -0.0450t² / 0.180t
0.7265 = 0.25t
t = 2.91 s is the velocity vector of the insect
Answer:
a) 0.022%
b) 10014.32 lb
Explanation:
a) Percentage uncertainty would be

Percent uncertainty is 0.022%
b) For 1 kg uncertainty mass in kg would be

Mass in pounds would be

Mass in pound-mass is 10014.32 lb
Answer:
Increases
Explanation:
The expression for the capacitance is as follows as;

Here, C is the capacitance,
is the permittivity of free space, A is the area and d is the distance between the parallel plate capacitor.
It can be concluded from the above expression, the capacitance is inversely proportional to the distance. According to the given problem, the capacitor is disconnected from the battery and the distance between the plates is increased. Then, the capacitance of the given capacitor will decrease in this case.
The expression for the energy stored in the parallel plate capacitor is as follows;

Here, E is the energy stored in the capacitor, C is the capacitance and Q is the charge.
Energy stored in the given capacitor is inversely proportional to the capacitor. The charge on the capacitor is constant. In the given problem, as the distance between the parallel plates is being separated, the energy stored in this capacitor increases.
Therefore, the option (c) is correct.
Answer:
a. the amount of work done on a system is dependent of pathway
Explanation:
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system.
ΔU = Q - W
Where;
Q, the net heat transfer into the system depends on the pathway
W, the net work done by the system also depends on the pathway
But, ΔU, the change in internal energy is independent of pathway
Therefore, the correct option is "A"
a. the amount of work done on a system is dependent of pathway